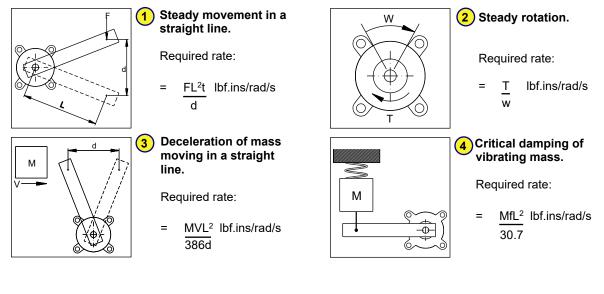
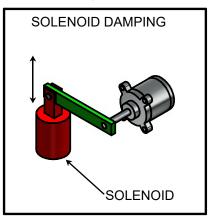

Kinetrol Dashpot Calculations - Calculating Damping Rates


Metric Units

English Units

Given quantity and unit

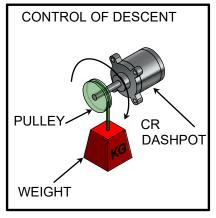
F	lbf	=	force of weight on end of lever	t	S	=	time taken to move this distance	М	lbf	=	mass
L	in	=	effective length of lever	w	rad/s	=	speed of rotation	۷	in/s	=	velocity of mass
d	in	=	distance moved by end of lever	т	lbf.ins	=	torque applied to shaft	f	Hz	=	frequency of vibration



Conversion factors

1 rad	=	57.3°	1	RPM	=	0.1047 rad/s	1	lbf.ins	=	0.113 N	m	
1 Nm	=	8.85 lbf.ins	1	lbf	=	4.45 N	9.8	81 N	=	1 kgf	=	1 kp

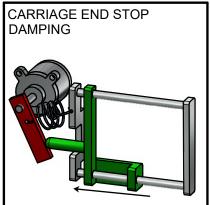
Sample Calculations


Solenoid Damping

Solenoid force F	=	10 N	
Solenoid travel d	=	25 mm = 0.025 m	
Lever arm length L	=	75 mm = 0.075 m	
Travel time required t		5 s	
Use Formula 1: Rate	=	$FL^{2}t = 10 \times 0.07$	75² x 5
		d 0.02	25
	=	11.2 Nm/rad/s (99 lbf.In	s/rad/s)

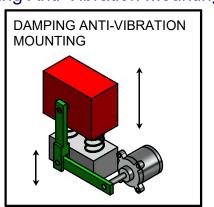
Conclusion: Use KD – A2

Control of Descent


Weight	= 1 kg	
Pulley radius	= 50 mm	= 0.05 m
Speed required V	= 100 mm/s	= 0.1 m/s
Force F	= 1 x 9.81	= 9.81 N
Torque T	= 9.81 x 0.05	= 0.49 Nm
Speed of rotation w	= 0.1 m/s ÷ 0.05 n	n = 2 rad/s
Use Formula 2: F	Rate = T/w =	0.49/2 = 0.245 Nm/rad/s
This is a CR dashpo torque and speed	ot application. Find p	oint on the S – CRD graph for

Conclusion:

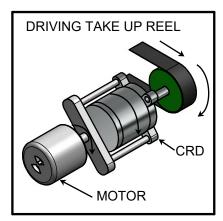
Conclusion:


Use S - CRD - 30,000

Carriage Mechanism End Stop Damping

Carriage mass M = 10 kgVelocity V = 1 m/s Deceleration distance d = 50 mm = 0.05 mLever length L = 75 mm = 0.075 m Use Formula 3: Rate = MVL² = 10 x 1 x 0.075² d 0.05 = 1.1 Nm/rad/s (9.7 lbf.lns/rad/s) Check max. rotation speed = 1 m/s ÷ 0.075 m = 13.3 rad/s Hence max. torque = 13.3 x 1.1 = 14.7 Nm (130 lbf.lns)

Damping Anti-Vibration Mounting


Conclusion: Use) KD	– A3		
	=	25 Nm/r	rad/s	(220 lbf.Ins/rad/s)
Use Formula 4: Rat	e =	$\frac{MfL^2}{0.08}$	=	$\frac{10 \text{ x } 20 \text{ x } 0.1^2}{0.08}$
0		100 1111	-	0.10111
Lever length L		100 mm	. =	0 10 m
Natural frequency f	=	20 Hz		
Mass M	=	10 kg		

Use KD – A1

Page 2 of 3

Kinetrol Dashpot Calculations - Calculating Damping Rates

Notes on Constant Tension Take Up Reel

A CR dashpot can be used as a slipping drive between a geared motor and a take up reel for winding tape or wire on to a reel. If sized correctly the tension in the tape can be maintained within reasonable limits for a ratio of maximum to minimum reel radius of up to 2.5. Difficulty sometimes arises because it is necessary to select the correct motor speed as well as dashpot rate.

Suggested Procedure

Given:	Given: Tape linear speed V Required tension f Minimum reel radius a Maximum reel radius b						
Required m	otor speed n	=	13 V/a	rpm			
Required da	Nm/rad/s						
CR dashpot must give torque $\frac{0.4 \text{ k V}}{a}$ At a speed of 0.4 V/a rad/s.							
·							

Check max. Power dissipated = $k(0.1n - V/b)^2 W$

This must be less than 10W for S – CRD and 40W for T – CRD.

